Involvement of P2X4 and P2Y12 receptors in ATP‐induced microglial chemotaxis

K Ohsawa, Y Irino, Y Nakamura, C Akazawa, K Inoue… - Glia, 2007 - Wiley Online Library
K Ohsawa, Y Irino, Y Nakamura, C Akazawa, K Inoue, S Kohsaka
Glia, 2007Wiley Online Library
We previously reported that extracellular ATP induces membrane ruffling and chemotaxis of
microglia and suggested that their induction is mediated by the Gi/o‐protein coupled P2Y12
receptor (P2Y12R). Here we report discovering that the P2X4 receptor (P2X4R) is also
involved in ATP‐induced microglial chemotaxis. To understand the intracellular signaling
pathway downstream of P2Y12R that underlies microglial chemotaxis, we examined the
effect of two phosphatidylinositol 3′‐kinase (PI3K) inhibitors, wortmannin, and LY294002 …
Abstract
We previously reported that extracellular ATP induces membrane ruffling and chemotaxis of microglia and suggested that their induction is mediated by the Gi/o‐protein coupled P2Y12 receptor (P2Y12R). Here we report discovering that the P2X4 receptor (P2X4R) is also involved in ATP‐induced microglial chemotaxis. To understand the intracellular signaling pathway downstream of P2Y12R that underlies microglial chemotaxis, we examined the effect of two phosphatidylinositol 3′‐kinase (PI3K) inhibitors, wortmannin, and LY294002, on chemotaxis in a Dunn chemotaxis chamber. The PI3K inhibitors significantly suppressed chemotaxis without affecting ATP‐induced membrane ruffling. ATP stimulation increased Akt phosphorylation in the microglia, and the increase was reduced by the PI3K inhibitors and a P2Y12R antagonist. These results indicate that P2Y12R‐mediated activation of the PI3K pathway is required for microglial chemotaxis in response to ATP. We also found that the Akt phosphorylation was reduced when extracellular calcium was chelated, suggesting that ionotropic P2X receptors are involved in microglial chemotaxis by affecting the PI3K pathway. We therefore tested the effect of various P2X4R antagonists on the chemotaxis, and the results showed that pharmacological blockade of P2X4R significantly inhibited it. Knockdown of the P2X4 receptor in microglia by RNA interference through the lentivirus vector system also suppressed the microglial chemotaxis. These results indicate that P2X4R as well as P2Y12R is involved in ATP‐induced microglial chemotaxis. © 2007 Wiley‐Liss, Inc.
Wiley Online Library