Acquisition of p16INK4Aandp15INK4BGene Abnormalities Between Initial Diagnosis and Relapse in Children With Acute Lymphoblastic Leukemia

KW Maloney, L McGavran, LF Odom… - Blood, The Journal of …, 1999 - ashpublications.org
KW Maloney, L McGavran, LF Odom, SP Hunger
Blood, The Journal of the American Society of Hematology, 1999ashpublications.org
Although numerous somatic mutations that contribute to the pathogenesis of childhood
acute lymphoblastic leukemia (ALL) have been identified, no specific cytogenetic or
molecular abnormalities are known to be consistently associated with relapse. The
p16INK4A (p16), which encodes for both p16INK4A and p19ARF proteins, and p15INK4B
(p15) genes are inactivated by homozygous deletion and/or p15 promoter hypermethylation
in a significant proportion of cases of childhood ALL at the time of initial diagnosis. To …
Abstract
Although numerous somatic mutations that contribute to the pathogenesis of childhood acute lymphoblastic leukemia (ALL) have been identified, no specific cytogenetic or molecular abnormalities are known to be consistently associated with relapse. Thep16INK4A (p16), which encodes for both p16INK4A and p19ARF proteins, andp15INK4B (p15) genes are inactivated by homozygous deletion and/or p15 promoter hypermethylation in a significant proportion of cases of childhood ALL at the time of initial diagnosis. To determine whether alterations in these genes play a role in disease progression, we analyzed a panel of 18 matched specimen pairs collected from children with ALL at the time of initial diagnosis and first bone marrow relapse for homozygous p16 and/orp15 deletions or p15 promoter hypermethylation. Four sample pairs contained homozygous p16 and p15 deletions at both diagnosis and relapse. Among the 14 pairs that werep16/p15 germline at diagnosis, three ALLs developed homozygous deletions of both p16 and p15, and two developed homozygous p16 deletions and retained p15germline status at relapse. In two patients, p15 promoter hypermethylation developed in the interval between initial diagnosis and relapse. In total, homozygous p16 deletions were present in nine of 18 cases, homozygous p15 deletions in seven of 18 cases, and p15 promoter hypermethylation in two of eight cases at relapse. These findings indicate that loss of function of proteins encoded by p16 and/or p15 plays an important role in the biology of relapsed childhood ALL, and is associated with disease progression in a subset of cases.
ashpublications.org